开元棋牌

信息与计算科学系
您现在的位置: 首页 > 师资队伍 > 信息与计算科学系 > 正文

郑光辉

发布时间:2017-12-12 15:24    浏览次数:    来源:

姓名:

郑光辉

学历/学位:

博士/理学博士

职称:

副教授

Email:

zhgh1980@163.com

电话:


办公室:


个人主页:


学习经历

[1] 2012.7-present, Assistant Professor, Hunan University (湖南大学).

[2] 2007.9-2012.7, Ph.D. of applied mathematics, inverse problem for PDE, Lanzhou University (兰州大学:硕博连读).

[3] 2015.3-2016.3, Visting scholar, Ecole Normale Superieure (巴黎高师).

主要论文著作

主要研究方向: 偏微分方程中的反问题,贝叶斯统计反问题,等离子共振分析,隐形设计,超分辨成像。特别是基于等离子共振分析和变换光学理论,进行隐形斗篷和其他隐形器件的设计,还有突破衍射极限的超分辨成像技术。

欢迎有一定数学基础,喜欢写程序,或者对概率统计有兴趣的学生报考我的研究生。

2016:

[1] G. H. Zheng and Q. G. Zhang, Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method, Inverse Problems in Science and Engineering, (2016).

[2] G. H. Zheng and Q. G. Zhang, Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method. 143–148.

2015:

[1] G. H. Zheng, Recover the solute concentration from source measurement and

boundary data, Inverse Problems in Science and Engineering, 23 (2015), 1199-1221.

[2] C. Shi, C. Wang, G. H. Zheng and T. Wei, A new a posteriori parameter

choice strategy for the convolution regularization of the space-fractional backward diffusion problem, Journal of Computational and Applied Mathematics, 279 (2015), 233-248.

2014:

[1] G. H. Zheng and T. Wei, Recover the source and initial value simultaneously

in a parabolic equation, Inverse Problems, 30 (2014), 065013 (35pp).

2013:

[1] H. Cheng, C. L. Fu, G. H. Zheng and J. Gao, A regularization for a Riesz-Feller

space-fractional backward diffusion problem, Inverse Problems in Science and Engineering, 22 (2013), 860-872.

2012:

[1] G. H. Zheng and T. Wei, A new regularization method for a Cauchy problem of the time fractional diffusion equation, Advances in Computational Mathematics, 36 (2012), 377-398.

2011:

[1] G. H. Zheng and T. Wei, A new regularization method for the time fractional

inverse advection-dispersion problem, SIAM Journal on Numerical Analysis, 49 (2011), 1972-1990.

[2] G. H. Zheng and T. Wei, A new regularization method for solving a time fractional inverse diffusion problem, Journal of Mathematical Analysis and Applications, 378 (2011), 418-431.

[3] G. H. Zheng and T. Wei, Spectral regularization method for a time fractional

inverse diffusion problem, Applied Mathematics and Computation, 218 (2011), 396-405

2010:

[1] G. H. Zheng and T. Wei, Two regularization methods for solving a Riesz-Feller

space-fractional backward diffusion problem, Inverse Problems, 26 (2010), 115017 (22pp).

[2] G. H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem

of the time fractional advection-dispersion equation, Journal of Computational and Applied Mathematics, 233 (2010), 2631-2640.

[3] G. H. Zheng and T. Wei, Spectral regularization method for the time fractional inverse advection-dispersion equation, Mathematics and Computers in Simulation, 81 (2010), 37-51.

担任下列学术期刊的审稿人,并被国际反问题权威期刊《Inverse Problems》评为2016年 “Outstanding Reviewer Awards 2016”:

Inverse Problems;

Journal of Inverse and Ill-Posed Problems;

Inverse Problems in Science and Engineering;

Journal of Physics A: Mathematical and Theoretical;

Applied Numerical Mathematics;

Mathematical Methods in the Applied Sciences;

Mathematics and Computers in Simulation;

Journal of Engineering Mathematics;

Acta Mathematica Scientia;

科研项目

[1] NSF of China (Source identification in spatial domain anomalous diffusion:

regularization theory and algorithms), January, 2014 - December, 2016.

[2] Funds for the growth of young teachers of Hunan University, September, 2012

- September, 2017.

[3] Funds for the Ph.D. academic newcomer award of Lanzhou University (Inverse

problems in Fractional PDEs), June, 2011 - June, 2012.

讲授课程

[1] Advanced Algebra.

[2] Numerical Analysis.

[3] Mathematical Software.

[4] Numerical solution of PDEs.

本期讲授课程

[1] Numerical Analysis.

[2] Numerical solution of PDEs.

[3] Mathematical Software.

[4] Stochastic process.

上一篇:于红香

下一篇:雷渊

开元棋牌官网_2019十大棋牌游戏排行榜「权威推荐」 版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备05000239号]     [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]