开元棋牌

十大棋牌游戏排行榜
您现在的位置: 首页 > 科学研究 > 十大棋牌游戏排行榜 > 正文

20190417 Gonzalo Pérez, Jesús The Gibbons-Hawking ansatz and Blaschke products

发布时间:2019-04-12 10:12    浏览次数:    来源:

Title: The Gibbons-Hawking ansatz and Blaschke products

Location: 425Mathematics Building

Speaker: Prof. Gonzalo Pérez, Jesús (Universidad Autónoma de Madrid, Spain)

Date: April 17, 2019,15:00--16:00

 

 

Abstract: A hyperk\"akler structure in real dimension 4 consists of a Riemann metric $\, g\,$ together with three holomorphic structures $\, J_1,J_2,J_3\,$ which are parallel with respect to~$\, g\,$ and satisfy the quaternionic identities $\, J_1J_2=J_3$, etc. These are all local properties, and they correspond to Monge-Ampere equations.

Hyperk\"ahler structures preserved by the flow of some vector field~$\, X\,$ can be constructed, via the Gibbons-Hawking ansatz, from a harmonic function in~$\,{\mathbb R}^3$.

Structures with a vector field $\, Y$, whose flow is holomorphic for the~$\, J_i\,$ and expanding for the metric, correspond to families of contact forms parametrized by the $\, 2$-sphere (called contact spheres). A natural global property for these structures is {\it slice completeness:} that the metric be complete in directions transverse to the expanding flow.

Structures having both types of flows are constructed, via our version of the Gibbons-Hawking ansatz, from holomorphic data given on a Riemann surface. Blaschke products are special meromorphic functions; with them we construct slice-complete hyperk\"ahler metrics, thus solving a local and a global problem at once.


See also the attached file for Abstract.

 

开元棋牌官网_2019十大棋牌游戏排行榜「权威推荐」 版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备05000239号]     [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]